.

Wednesday, May 22, 2019

Solubilities Within a Family Lab Report

Purpose/Objective The purpose of this experiment is to identify the periodic trends in the solubility of the alkalic populace metals and comp be the results to that of booster cable Materials 1. Pencil 2. Lab notebook 3. 5 small test subway systems 4. Droppers Chemicals 1. 0. 2 M Mg(NO3)2 2. 0. 2 M Ca(NO3)2 3. 0. 2 M Sr(NO3)2 4. 0. 2 M Ba(NO3)2 5. 0. 2 M Pb(NO3)2 6. 1 M NaOH 7. 0. 2 M NaBr 8. 0. 2 M NaI 9. 0. 2 M Na2SO4 10. 0. 1 M Na2CO3 11. 0. 2 M Na2C2O4 12. 1 M NaCl Data and Results Mg(NO3)2Ca(NO3)2Sr(NO3)2Ba(NO3)2Pb(NO3)2 NaOHCloudyMilkyCloudyCloudyMilky NaClNo reactionNo reactionNo reactionNo reactionPowderNaBrNo reactionNo reactionNo reactionNo reactionCloudy NaINo reactionNo reactionNo reactionCloudyBright Yellow Na2SO4No reactionNo reactionWhite, yogurt-likeMilkyMilky Na2CO3MilkyMilkyPowderWhite, cotton-likePowder Na2C2O4No reactionMilkyMilkyPowderPowder Sample Calculations None ? Discussion and Comments This experiment tested the theory that the elements in the periodic t able are arranged in a manner in which the elements of a sort out share similar chemical properties. The elements we used were the ones from the base-forming earth metal group.These elements extend to form 2+ cations and are very reactive. We also compared these elements to that of lead because lead also forms a 2+ cation. We used the chemical property of solubility to get word the periodic trends of the alkaline earth metals. As a oecumenical rule, reactivity increases as you move down a group in the periodic table. This actor in regards to solubility that the more you farther you move down the group the more insoluble the element is when combined with hydroxides, chlorides, bromides, iodides, sulfates, carbonates, and oxalates.My results were consistent with this theory in that the mixtures went from no reaction to forming a precipitate or from forming a light precipitate to a heavy one as the elements moved down the periodic table. The precipitates that were organise gradu ally changed from a muddy or milky mixture to a heavy solid precipitate that would settle on the bottom of the test tube. In some instances lead reacted very similarly with the alkaline earth metal but very different in the other reactions such as with iodide.This is due(p) to leads position on the periodic table as compared to those of the alkaline earth metals. The position on the periodic table correlates to an elements atomic radius, ionization energy, and electron affinity. all(prenominal) of these properties affect an elements chemical properties such as solubility. A systematic error occurred during my experiment when I observed a reaction mingled with barium and iodide. There should have been no reaction. This error is probably the result of using a test tube that was not cleaned properly prior to combining Ba(NO3)2 with NaI.This experiment reinforced the concepts introduced in Chapter 8 of our textbook. Pre-Lab Questions 1. The names and symbols of the alkaline earth me tals encountered in this experiment are a. magnesium Mg b. Barium Ba c. Strontium Sr d. Calcium Ca 2. a. The general electron configuration of the alkaline earth metals is Noble gasns2. b. The electron configuration for lead, Pb, is Xe6s25d104f146p2. c. All the formulas of the oxides formed by the alkaline earth metals and lead have the general formula of RO. 3.The general formulas for the following compounds with alkaline earth metals or lead a. RSO4 b. RCl2 c. RCO3 d. RI2 e. RBr2 f. RC2O4 g. R(OH)2 h. R(NO3)2 i. RCrO4 4. The general method that was used to examine qualitative solubilities in this experiment is observation. Post Lab Questions 1. The solubility of the alkaline earth metals with hydroxides increases as you move down the group soluble with halides with sulfates, carbonates and oxalates decreases as you move down the group down the group. 2. The solubilities mingled with alkaline earth metals and lead with NaOH are similar ecause all of the reactions were either cloudy or milky. The solubilities between alkaline earth metals and lead with NaCl are different because all of the alkaline earth metals are soluble but lead is not. The solubilities between alkaline earth metals and lead with NaBr are different because all of the alkaline earth metals are soluble but lead is not. The solubilities between alkaline earth metals and lead with iodide are different because all of the alkaline earth metals are soluble but lead is not soluble and formed a glistening yellow precipitate.The solubilities of Mg and Ca with SO4 are different because they are soluble but lead is not and solubilities of Sr and Ba are similar to lead. The solubilities between alkaline earth metals and lead with CO3 are similar since all of compounds form some sort of a white precipitate. The solubility of Mg with C2O4 is different from lead because it is soluble but lead is not and solubilities of rest of alkaline earth metals are similar because they all form some sort of whit e precipitate. . The solubilities of the alkaline earth metals and that of lead may differ markedly due to their respective electron configurations. The alkaline earth metals like to give up two electrons from their outmost shell and form cations because by doing so their electron configuration becomes isoelectronic with the closest noble gas. Lead looses its to electrons from the 6p suborbital. Resources Chang, R. (2010). Chemistry 10th Edition. New York, NY McGraw Hill.

No comments:

Post a Comment